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Abstract— Wireless sensor networks (WSNs) are event-based
systems that rely on the collective effort of dense deployed sensor
nodes. Due to the dense deployment, since sensor observations
are spatially correlated with respect to spatial location of sensor
nodes, it may not be necessary for every sensor node to transmit
its data. Therefore, due to the resource constraints of sensor
nodes it is needed to select the minimum number of sensor
nodes to transmit the data to the sink. Furthermore, to achieve
the application-specific distortion bound at the sink it is also
imperative to select the appropriate reporting frequency of sensor
nodes to achieve the minimum energy consumption. In order to
address these needs, we propose the new Distributed Node and
Rate Selection (DNRS) method which is based on the principles
of natural immune system. Based on the B-cell stimulation in
immune system, DNRS selects the most appropriate sensor nodes
that send samples of the observed event, are referred to as
designated nodes. The aim of the designated node selection is to
meet the event estimation distortion constraint at the sink node
with the minimum number of sensor nodes. DNRS enables each
sensor node to distributively decide whether it is a designated
node or not. In addition, to exploit the temporal correlation in
the event data DNRS regulates the reporting frequency rate of
each sensor node while meeting the application-specific delay
bound at the sink. Based on the immune network principles,
DNRS distributively selects the appropriate reporting frequencies
of sensor nodes according to the congestion in the forward path
and the event estimation distortion periodically calculated at the
sink by Adaptive LMS Filter. Performance evaluation shows that
DNRS provides the minimum number of designated nodes to
reliably detect the event properties and it regulates the reporting
frequency of designated nodes to exploit the temporal correlation
in the event data whereby it provides the significant energy
saving.

Index Terms— Wireless Sensor Networks, Immune system,
Spatio-Temporal Correlation, Energy Efficiency.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are generally comprised
of densely deployed sensor nodes collaboratively observing
and communicating extracted information about physical phe-
nomenon [1]. Due to the dense deployment of sensor nodes,
sensor observations are the spatially correlated according to the
spatial location of sensor nodes. This results in transmission
of highly redundant sensor data which is not necessary to
estimate the event properties at the sink. Therefore, due
to the energy constraint of sensor nodes it is necessary to
select the minimum number of designated node which can
provide the sink to accurately estimate the event properties.

Furthermore, the nature of the energy-radiating physical phe-
nomenon constitutes the temporal correlation between each
consecutive observation of a sensor node [2]. Therefore, it is
necessary to regulate the reporting frequency of sensor nodes
to achieve minimum energy consumption while achieving the
event detection reliability.

There has been some research efforts to study about cor-
related data gathering in WSN according to the different
methods [3], [4], [5], [6], [7]. These works provide the great
deal of capability to exploit the correlation at the sensor data.
In [10], the model for point and field sources are introduced
and their spatio-temporal characteristics are derived along with
the distortion functions. In [9], exploiting spatial correlation
at the MAC layer is achieved by collaboratively regulating
medium access so that redundant transmissions from corre-
lation neighbors are suppressed. In [9], the Iterative Node
Selection (INS) algorithm is given to select the representative
nodes which represent the set of nodes generating spatially
correlated data. Since INS selects the representative nodes
with centralized manner at the sink and it computes the
distortion according to the Wide Sense Stationary (WSS)
assumption on the sink which is neither scalable nor realistic.
These works consider and capture the spatio-temporal model
of physical phenomenon observed by sensor nodes for the
realization of advanced efficient communication protocols.
However, in these works since the event data is assumed
to be Gaussian and wide-sense stationary (WSS) and the
most process encountered in practice are non-stationary, these
works are not realistic. Moreover, in the literature, there exist
some distributed solutions [11], [12] to exploit the spatio-
temporal correlation in WSN. However, these studies neither
select the sensor nodes which communicate with the sink node
nor regulate the data rate to the sink node according to the
estimation distortion at the sink node.

On the other hand, the natural Immune System has given
the great inspiration for several researches from robotic to
network security [13], [14], [15]. Because of its ability to
self and non-self discrimination, it has been used for the data
clustering and the computer security as an inspiration. In [13],
an effective artificial immune system is presented, which is
used as a simple classification tool. Using the clonal selection
mechanism in Immune System, it attempts to group similar
data items according to relationship between them. In [16], the
problem of protecting computer systems is addressed as the
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problem of learning to distinguish self from other. It proposes a
method for change detection which is based on the generation
of T-cells in the immune system.

In this paper, we propose the Distributed Node and Rate
Selection (DNRS) method which is based on the principle
of natural immune system. Based on the B-cell stimulation
model in Immune System, DNRS selects the most appropriate
sensor nodes that send samples of observed event, are referred
to as designated nodes. The aim of the designated node
selection is to meet the event estimation distortion constraint
at the sink node with the minimum number of sensor node.
DNRS enables sensor nodes to distributively decide whether
it is a designated node or not according to its correlation
with its neighbors and the event source. In addition, DNRS
distributively regulates the reporting frequency rate of each
sensor node to provide the event detection reliability with
minimum energy consumption. Based on the immune network
models, DNRS selects the appropriate reporting frequencies of
sensor nodes according to the congestion in the forward paths
and the event estimation distortion periodically calculated at
the sink node by Adaptive LMS Filter.

The remainder of this paper is organized as follows. In
Section II, after we briefly introduce the Biological Immune
System, we introduce the relationship between Wireless Sen-
sor Networks (WSN) and Immune System. In Section III, we
present the DNRS method. We firstly introduce the Distributed
Node Selection scheme and then, introduce our Distributed
Rate Selection mechanism. In Section IV, we evaluate the
performance of DNRS. Finally, we conclude this paper with
Section V.

II. IMMUNE SYSTEM AND WIRELESS SENSOR NETWORKS

In this section, we first briefly introduce the immune sys-
tem and its basic operation principles. Then, we discuss the
similarities and the relation between the Immune System and
Wireless Sensor Networks.

A. Biological Immune System

The human immune system is a complex natural defense
mechanism. It has the ability to learn about foreign substances
(pathogens) that enter the body and to respond to them by
producing antibodies that attack the antigens associated with
the pathogen [13]. The adaptive immune system is made
up of lymphocytes which are white blood cells, B and T
cells. Each of B-cells has distinct molecular structure and
produces ’Y’ shaped antibodies from its surfaces. The antibody
recognizes antigen that is foreign material and eliminates
it. This antigen-antibody relation is innate immune response
[14]. Most antigens have various antigen determinants that
are called epitope. In order to grab and latch onto antigen,
antibody possesses a structure called paratope. Furthermore,
each antibody has a unique epitope called idiotope. Note that
different antibody types may have many epitopes in common.
An epitope that is unique to a given antibody type is called
an idiotope, hence the name idiotypic network for any scheme
of regulation that works through the recognition of idiotopes
[17]. An antibody type is thought to be stimulated when its

paratopes recognize other types, and suppressed if its epitopes
are recognized by other antibody paratopes.

The surface of a B-cell contains antibodies for that B-cell.
When an antibody for a B-cell binds to an antigen, the B-cell
becomes stimulated. The level of B-cell stimulation depends
not only on the success of the match to the antigen, but
also on how well it matches other B-cells in the immune
networks. As the response of the antigen, the stimulated B-
cells secrete the antibody to eliminate the antigen. B-cells
are also affected by T-cells during immune response. The
helper T-cells activate B-cells when the antigen invades it.
The suppressor T-cells prevent the activation of B-cell when
the antigen was eliminated.

Immune system has the ability to process information, to
learn and memorize, to discriminate between self and non-
self, and to keep up harmony of the whole system. Because
of these abilities, it gives the great inspiration to many kind of
researches in computer sciences, robotics and signal process-
ing. Therefore, Artificial Immune System (AIS) models have
been introduced. In [17], an AIS model is proposed, which
consists of a set of B-cells and the links between those B-
cells. Each B-cell object can represent a data item which is
being used for learning. According to this model, each B-cell
is capable of responding to an antigen specified by a data item
when it is stimulated by that antigen specific data item. In the
natural immune system, the level of the B-cell stimulation
relates that how well its antibody binds to the antigen and its
affinity (or enmity) to its neighbors in the network. In [13], B-
cell stimulation is modeled in terms of these three influences.
The primary stimulus is defined as the affinity between the
B-cell and the pathogen i.e. how well they match. The second
stimulus for a B-cell is the affinity to its neighbors. Third is
the suppression (enmity) factor from the loosely connected
neighbor of this B-cell.

The stimulated B-cells start to produce more lymphocytes
(i.e. to clone) and to secrete free antibodies. To model the
antibody secretion of the stimulated B-cell, In [18], idiotypic
network hypothesis is proposed, which is based on mutu-
ally stimulus and suppression between antibodies. In [17],
an analytical immune network model is proposed in terms
of idiotypic network hypothesis introduced in [18]. In [14],
to improve the adaptation ability of the system a modified
immune network model is proposed by adding helper and
suppressor T-cell model. In Immune System, the helper T-cell
activates B-cell when the antigen invades it, and the suppressor
T-cell prevents the activation of B-cell when the antigen was
eliminated. The antigen concentration is kept in the desired
level by the antibody concentrations depending on the stimulus
value of antibody and T-cells. More specifically, when the
stimulus value of antigen (gi(t)) is high and the stimulus
value of antibody (Si(t)) is small, the concentration of T-cell
(ci(t)) is small. Therefore, in this case ci(t) take a role of
helper T-cell that stimulate B-cell and increases the antibody
concentration. On the contrary, the stimulus value of antigen
is small and the stimulus value of antibody is big, the ci(t)
is big. So, it take part in suppressor T-cell and decreases the
antibody concentration. In this model, the stimulus value of
antibody (Si(t)) is expressed by



dSi(t + 1)
dt

= (α
N∑

j=1

mijsj(t) − α

N∑
k=1

mkisk(t) +

+βgi − ci(t) − ki)si(t) (1)

where mij is mutual stimulus coefficient of antibody i and j,
gi is affinity between antibody i and antigen, ki is the natural
extinction of the antibody i, α, β, η are constants. si(t) is the
concentration of antibody i at time t and given as follows

si(t + 1) =
1

1 + exp(0.5 − Si(t + 1))
(2)

Furthermore, depending on the Si(t) and gi(t), ci(t) which
denotes the concentration of T-cells and controls the concen-
tration of antibody i is expressed by

ci(t) = η(1 − gi(t))Si(t) (3)

In Section III, we adopt the immune network model given
above to derive an effective communication model between
sensor nodes and the sink. In the next section, we introduce
some analogies between Immune System and Wireless Sensor
Networks (WSNs).

B. Immune System Based Sensor Networks

Although Immune System seems different from the Wireless
Sensor Networks (WSN), they have the great deal of analogies
when considered the tasks they accomplish. For example,
when the Immune System encounters a pathogen, some B-cells
are stimulated and secrete antibodies in different densities to
eliminate the antigens produced by the pathogen. Similarly,
when an event occurs in WSN environment, some sensor
nodes referred to as designated node (DN) sense the event
information and send this information to sink with a reporting
frequency to achieve a certain reliability/distortion constraint
at the sink.

TABLE I

RELATIONSHIP BETWEEN IMMUNE SYSTEM AND WIRELESS SENSOR

NETWORKS (WSN).

Immune System Wireless Sensor Networks (WSN)
B-cells Sensor nodes

Antibody Sensor data
Antibody density Reporting frequency rate f

T-cells Rate control parameter
Pathogen Event source
Antigen Estimation distortion

Natural extinction Packet loss

In WSN, since multiple sensors record information about
a single event in the sensor field, sensor observations are
spatially correlated with respect to spatial location of sensor
nodes. This results in transmission of highly redundant sensor
data which is not necessary to estimate the properties of the
event at the sink node. Therefore, it may not be necessary for
every sensor node to transmit its data to the sink; instead, a

smaller number of DN measurements might be adequate to
communicate the event features to the sink within a certain
reliability/fidelity level [8]. DNRS use the B-cell stimulation
model given in [13] to determine the minimum number of
DNs while meeting the application specific distortion bound
at the sink.

For a fixed number of DNs, the minimum distortion can be
achieved by choosing these nodes such that (i) they are located
as close to the event source as possible and (ii) are located
as farther apart from each other as possible [8]. Similarly,
as given in [13], the stimulation of a B-cell depends on the
distance between the pathogen and the B-cell and distance
between the B-cell and its neighbors which stimulates or
suppress it. That is, the B-cells which is nearest to the pathogen
and suppressed as least as possible by their neighbors become
the stimulated B-cells. The stimulated B-cells start to secrete
the antibodies in different densities which are controlled by T-
cells to keep the antigen densities in desired level. Similarly,
after the selection of DNs they send the event information to
sink node with a reporting frequency to achieve the distortion
constraint at the sink node. In Table I, we summarize this
relationship between Immune System and Wireless Sensor
Networks (WSN). According to this relationship, DNRS dis-
tributively selects the DNs by using the B-cell stimulation
model and distributively regulates the reporting frequency of
the DNs based on immune network principles.

III. IMMUNE SYSTEM BASED DISTRIBUTED NODE AND

RATE SELECTION

In this section, we first introduce the DN selection scheme
and then, the reporting frequency regulation mechanism in
DNRS.

A. Distributed Designated Node Selection

According to the application, the physical phenomenon can
be modeled by a point source or by a field source. For
example, while the case of object tracking can be modeled
by a point source, the case of monitoring magnetic field
and seismic activities can be modeled by field source. Here,
in order to exploit the spatio-temporal correlation with Im-
mune System based DNRS mechanism, we follow the spatio-
temporal correlation framework given in [10]. The sink node
is interested in reconstructing the source signal at a specific
location (x0, y0). Although the reconstruction at the sink node
depends on application, the source signal can be modeled as
the spatio-temporal process s(t, x, y) where t and (x, y) denote
time and spatial coordinates respectively. For reconstruction of
the event features, the sink node estimates the event source,
S, according to the observations of the sensor nodes, ni

(i = 1, ..., N), in the event area. Each sensor node sends its
encoded information Yi[n] to sink node. Encoded information
Yi[n] is the delayed and noisy version of the event data. The
sink decodes the received data Yi[n], i = 1...N, n = n1...nτ

to reconstruct an estimation Ŝ of the source S in each time
period τ = tnτ

− tn1 . We give the decoded data at the sink
node as Zi[n], i = 1...N, n = n1...nτ . The sink is interested
in estimating the expected value of the event during a decision



interval τ . Assuming N sensor nodes send information at a
rate of f samples/sec, this estimation can simply be found
by

Ŝ(τ, f,N) =
1

τfN

N∑
i=1

τf∑
k=1

Zi[k] (4)

As discussed in Section II, the stimulation of a B-cell
depends on three influences. First influence is the affinity
between the B-cell and the pathogen. Second influence is
the affinity between the B-cell and its neighbors which make
it stimulated. Third influence is the affinity between the B-
cell and its neighbors which suppress it [13]. According to
the B-cell stimulation model given in [13], for a B-cell if
the summation of these three influences specified by some
equations is greater than a certain threshold value, this B-cell
becomes stimulated. In WSN, the minimum distortion can be
achieved by choosing the DNs such that (i) they are located
as close to the event source as possible and (ii) are located
as farther apart from each other as possible [8]. In fact, as
B-cell stimulation the selection of DNs depends on the three
influences given as follows:

1) First influence is the affinity between the sensor node
(B-cell) and event source (pathogen).

2) Second influence is the affinity between the sensor node
(B-cell) and its uncorrelated neighbor nodes (stimulating
B-cells).

3) Third influence is the affinity between the sensor node
(B-cell) and its correlated neighbor nodes (suppressing
B-cells).

To determine the correlated and uncorrelated neighbors of
a sensor node, we define the application-specific correlation
radius r. For a sensor node, while the neighbor nodes in its
correlation radius r are the correlated neighbors for this sensor
node, the neighbor nodes which are not in correlation radius
r are uncorrelated neighbors for this sensor node. Since the
spatial correlation between the sensor nodes depends on the
variance and the mean of the observed event signal, we assume
that correlation radius r is an application specific value, which
can be determined based on the statistical probability of
the physical phenomena observed in a given sensor network
application [8]. We also assume that each sensor node is aware
of its position and event source location by means of existing
localization techniques [21]. Each sensor knows the relative
position of its neighbors, as all nodes periodically broadcasts
its position to neighbors.

For the determination of the affinity between the sensor
node and its correlated and uncorrelated neighbor nodes, the
correlations between the nodes and event source are needed. To
express the correlations between event source and the nodes,
we use the correlation coefficients, ρs,i and ρi,j . ρs,i states
the correlation between a node ni sending information and the
event source S. ρi,j states the correlation between the nodes ni

and nj . We use the power exponential form [19] to model the
correlation coefficients ρs,i and ρi,j and give these coefficients
as follows.

ρs,i = Kϑ(ds,i) = e(−ds,i/θ1)
θ2 ; θ1 > 0, θ2 ∈ (0, 2] (5)

ρi,j = Kϑ(di,j) = e(−di,j/θ1)
θ2 ; θ1 > 0, θ2 ∈ (0, 2] (6)

where ds,i and di,j denote the distances between event source
S and node ni and between nodes ni and nj respectively. For
θ2 = 1, the model becomes exponential, while for θ2 = 2
squared exponential. The covariance function is assumed to
be nonnegative and decrease monotonically with the distance,
with limiting values of 1 at d = 0 and of 0 at d = ∞.

Now, as the B-cell stimulation model given in [13], we
mathematically model the DN selection. B-cell stimulation
model given in [13] depends on three influences (i) the
matching between the pathogen a B-cell (ii) the affinities
between the B-cell and its neighbor B-cells (iii) the enmity
between the B-cell and its neighbor B-cells. According to
this model, when the summation of these three influences
exceeds certain threshold for a B-cell, this B-cell becomes
stimulated. Using this B-cell stimulation scheme, we model
the DN selection depending on the similar three influences as
follows:

1) We model the first influence which is the affinity be-
tween the sensor node ni (B-cell) and event source s
(pathogen) as ρs,i. Here, ρs,i indicates the correlation
between event source s and sensor node ni. As the
distance between sensor node ni and event source s
decreases, ρs,i increases. Hence, it is more possible to
become a DN for a sensor nodes nearest to the event
source.

2) We model the second influence which is the affinity
between the sensor node ni (B-cell) and its uncorrelated
neighbor nodes (stimulating B-cells) nj ,∀j as follows.
nj is selected as the neighbor node which is not in the
correlation radius of sensor node ni.

∑
j

(1 − ρi,j) (7)

Here, ρi,j indicates the correlation between sensor node
ni and sensor node nj . As the distance between ni and
nj increases, ρi,j decreases. Therefore,

∑
j(1 − ρi,j)

is big for a sensor node having the more uncorrelated
neighbors (out of r). Hence, it is more possible to
become a DN for such sensor nodes.

3) We model the third influence which is the affinity
between the sensor node and its correlated neighbor
nodes (in r) nk,∀k such that nk is in the correlation
radius of sensor node ni and give as∑

k

(−ρi,k) (8)

where ρi,k indicates the correlation between sensor node
ni and sensor node nk. As the distance between ni

and nk decreases, ρi,k increases. Therefore,
∑

k(−ρi,k)
is small for a sensor node having the more correlated
neighbors. Hence, it is the least possible to become a
DN for such sensor nodes.

Here, we define the DN selection weight of node ni (Ti)
as the combination of these three influences as follows:



Ti = ρs,i +
∑

j

(1 − ρi,j) +
∑

k

(−ρi,k) (9)

When Ti exceeds the certain threshold tdns called the DN
selection threshold, sensor node ni becomes a DN. It is clear
that while tdns increases, the number of DN decreases because
the number of nodes which exceed tdns decreases. tdns is
determined at the sink node by means of distortion periodically
computed by the Adaptive LMS Filter. Adaptive LMS Filter is
typically applied in environments where signals with unknown
or non-stationary statistics are involved and appear for this
reason particularly suited to be used in highly dynamic systems
such as sensor networks [20]. Using the Adaptive LMS Filter,
the sink node predicts the estimated version of the event signal
sample Ŝ(τk, f,N) given in (4) from the previous samples
Ŝ(τk−r, f,N) r = 1...p, where p is the order of the filter.
Hence, the estimation error in the Adaptive LMS Filter is
expressed by

e[τk] = Ŝ(τk, f,N) − ¯̂
S(τk, f,N) (10)

where ¯̂
S(τk, f,N) denotes the prediction of Ŝ(τk, f,N) with

Adaptive LMS Filter. Depending on this error, e[τk], we give
the estimation distortion D as follows.

D =
1
M

M∑
k=1

e[τk]2 (11)

where M is the number of iteration.
For the event data regions having the temporally correlated

characteristic, since Ŝ(τk, f,N) can be inferred from the
previous samples Ŝ(τk−r, f,N), (r = 1...p) at the sink node,
the estimation distortion of the Adaptive LMS Filter decreases
to the certain interval at the sink node. With this decrease,
starting from the minimum value of tdns which makes all
nodes in the event area DN and hence provides the minimum
event estimation distortion, the sink node starts to increase
tdns to determine the minimum number of DN.

To increase tdns, the sink node adds a number (u) to tdns

in every decision interval (τk) and broadcasts the updated
designated node selection threshold (tdns+u) to sensor nodes.
As the tdns increases in each decision interval τk, the number
of DN decreases. Unless the distortion level of Adaptive
LMS Filter at the sink is increased, the sink continues to
increase tdns because the increase in the distortion means that
henceforth, the selected DNs can not represent the event data
gathering with all sensor nodes in the event area. Therefore,
when the distortion is increased, the sink node stops increasing
the tdns and it sets tdns to the last updated value of tdns

before the increase of the estimation distortion. After the
determination of maximum allowable tdns, the sink node
broadcasts this tdns to all sensor nodes. Therefore, each sensor
node can distributively decides whether it is a DN or not. If
Ti > tdns, sensor node i is a DN. If Ti < tdns, sensor node i
is not a DN.

Now, we give outline the entire DN node selection scheme
of DNRS with the algorithmic manner as follows.

• Step 1. When an event occurs, to decide whether it
is a DN or not, each sensor node computes its DN
selection weight (Ti, ∀i) according to its correlated and
uncorrelated neighbor nodes and the distance to the event
location.

• Step 2. Sink node sets the DN selection threshold tdns

as low as possible value such that at the beginning all
nodes in the event area become DN (Ti, > tdns,∀i). This
provides the minimum event estimation distortion at the
sink node at the beginning.

• Step 3. When the temporal correlation in the event data
is observed, the estimation distortion D given in (11)
decreases to a certain interval.

• Step 4. When the sink node observes the decrease on the
distortion D, it starts to increase tdns at each decision
interval τk without disturbing the distortion D which
decreases to a certain interval. It broadcasts the updated
threshold value to all sensor nodes in each decision
interval τk. Thus, at each decision interval τk, the number
of DN decreases because the number of nodes which
exceed the updated threshold tdns decreases.

• Step 5. Until the distortion which decreases to a certain
interval is increased, sink node continues to increase the
DN selection threshold tdns and to broadcast the updated
tdns.

• Step 6. When the distortion is increased at a decision
interval, the sink node stops increasing the DN selection
threshold tdns at this decision interval. Thus, sink node
sets the DN selection threshold tdns to the last updated
value of tdns before the increase of the estimation dis-
tortion and it broadcasts this tdns to all sensor nodes.

• According to the final tdns, the all sensor nodes distribu-
tively decide whether it is a DN not or not as follows.

• Step 7. If Ti > tdns, sensor node i is a DN.
• Step 8. If Ti < tdns, sensor node i is not a DN.

Thus, when an event occurs in WSN environment, DNRS
distributively selects the DNs by using above algorithm. The
selected DNs represent all nodes in the event area for this
event. However, when the location of the event changes,
DNRS again employs the DN selection algorithm given above
to determine the new DNs. After the determination of the
DNs, it is important to regulate their reporting frequency f
for exploiting the temporal correlation in the event data. In the
next section, we give our distributed frequency rate selection
scheme in DNRS.

B. Distributed Frequency Rate Selection of Designated Nodes

The reporting frequency of a sensor node f is defined as
the number of samples taken and hence packets sent out per
unit time by that node for a sensed phenomenon. Hence, the
reporting frequency f controls the amount of traffic injected
to the sensor field while regulating the number of temporally-
correlated samples taken from the phenomenon. This, in turn,
affects the observed event distortion, i.e., event detection
reliability [8].

According to the event signal characteristics, there exist the
upper and lower bound for the estimation distortion given (11).



Since the temporally correlated data can be easily inferred
from the previous samples of the data, for the temporally
correlated region in the event data the estimation distortion
approaches the lower bound. Inversely, while the temporal
correlation in the event data decreases, the estimation distor-
tion at the sink node approaches the upper bound. To exploit
the temporal correlation in the event data, the appropriate
reporting frequency regulation can be given as follows:

• For the case in which the event data is temporally cor-
related and therefore, the estimation distortion is lower,
the reporting frequency should be decreased.

• For the case in which the event data is not temporally cor-
related and therefore, the estimation distortion is upper,
the reporting frequency should be increased.

• Furthermore, since the increase of the reporting frequency
results in increasing the contention in the wireless chan-
nel, possible congestion in the forward path should also
be addressed with the appropriate congestion control
mechanism depending on the frequency rate regulation.

As discussed in Section II-A, in human immune system
when a pathogen enters a body, some B-cells are stimulated
and they start to secrete the antibody with the appropriate
density to eliminate the antigens produced by the pathogen.
This natural mechanism is modeled with the immune network
models given in (1), (2), (3). Similarly, in WSN when an event
occurs, some sensor node should be selected as the DNs and
they should send the sensed information with the appropriate
reporting frequency to sink node to reliably detect the event
without the congestion in the forward path. In order to address
the reporting frequency regulation and the congestion in the
forward path, we exploit the relationship between the immune
system and Wireless Sensor Networks (WSN) and we adopt
the immune network equations given in (1), (2), (3). According
to the relation between Immune System and WSNs, which is
summarized in Table I, we give the adaptation as follows:

• We consider the each sensor node as a B-cell which
secretes only one kind of antibody.

• We consider the sensor data as the antibodies which are
secreted by B-cells.

• In (1), (2) and (3), the stimulus value of antibodies
(Si) and the concentration of T-cells (ci) are the control
parameters which belong to antibody i to control the
concentration of antibody i. Therefore, we consider Si

and ci as the rate control parameter of DN i and denote
with Fi(τk) and ci(τk) respectively. We give Fi(τk) as
follows:

dFi(τk+1)
dt

= (α
K∑

j=1

γfj(τk)+βD−ci(τk)−Li(τk))fi(τk)

(12)
where K is the number of DN i neighbors, j at the
k − th decision interval, which is a neighbor of DN
i, α, β, η, γ are the constants. In Immune system, the
antibody concentrations are regulated to kept the antigen
concentration in the desired level. Therefore, we consider
the estimation distortion D given in (11), which needs to
be kept in the desired level, as the antigen concentration

g given in (1). We consider the packet loss of DN i at the
k− th decision interval (Li(τk)) as the natural extinction
of the antibody i (ki) given in (1). We assume that the
packet loss may result from any link error or possible
congestion. Depending on the estimation distortion D and
Fi(τk), we give ci(τk) as follows:

ci(τk) = η(1 − βD)Fi(τk) (13)

• We consider the reporting frequency of DN i at the
k − th decision interval, (fi(τk)) as the concentration
of antibody i (si), which is secreted by B-cell i. fj(τk)
denotes the reporting frequency rate of DN j in 12. We
give (fi(τk)) as follows:

fi(τk+1) =
1

1 + exp(0.5 − Fi(τk+1))
(14)

In each decision interval (τk), each sensor node distribu-
tively evaluates these mechanism given in (12), (14) and
(13) by means of the coordination between DNs and sink as
follows:

• In each decision interval (τk), each DN broadcasts its
reporting frequency (fi(τk)) to its neighbor DNs.

• In each decision interval τk, each DN computes the
number of its packet loss (Li(τk)) by the feedback from
the sink node.

• D is computed at the sink node by Adaptive LMS Filter
and it is broadcasted to all sensor nodes in each decision
interval.

Although the Immune System based rate control mechanism
given in (12), (14) and (13) appears like very complicated,
it provides the useful results to distributively regulate the
reporting frequency f of each sensor node. These results can
be given as

• While the distortion D at the sink node increases, the
control parameters Fi and ci, ∀i decreases. Therefore,
in this case the control parameters ci, ∀i take a role of
increasing the reporting frequency of all DNs to achieve
the desired distortion constraint.

• When the distortion D at the sink node decreases, the
control parameters Fi and ci, ∀i increases. Therefore,
in this case the control parameters ci, ∀i take a role of
decreasing the reporting frequency of all DNs.

• When the packet loss occurs at DN i packets due to
the congestion or the link error, Li for DN i becomes
big and in this case Li take a role of decreasing the
reporting frequency of DN i. This provides the distributed
congestion control to each node without disturbing the
distortion constraint.

IV. PERFORMANCE EVALUATION

In this section, we give the numerical simulation results of
DNRS for the DN selection and the regulation of DN reporting
frequency. In order to evaluate the performance of DNRS,
we develop a simulation environment using MATLAB. In this
environment, 100 sensor nodes in 50×50 sensor field were
randomly positioned. An event was generated with a point
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Fig. 1. The designated node selection Threshold tdns vs. the number of
designated nodes.

source randomly positioned in this environment. To investigate
the energy consumption of the DNRS, we assume that on
average each DN consumes 20mW cumulatively for sensing
the event and communicating the observed information to the
sink node during the overall event monitoring period. The
parameters used in our simulation are given in Table II.

TABLE II

SIMULATION PARAMETERS

Area of sensor field 50×50 m2

Number of sensor nodes (N) 100-300
Radio range of a sensor node 20 m

Correlation radius r 5 m
Correlation coefficients θ1 0.3
Correlation coefficients θ2 0.3

DNRS determines the DN selection threshold tdns at the
sink node and the sink node broadcasts tdns to all sensor nodes
whereby each sensor node distributively decides whether it is
a DN or not. To show the effect of the tdns on the number of
DN, we change the tdns from a certain minimum value which
make the all nodes the DN to a maximum value which make
the number of DNs minimum. As observed in Fig. 1, while
the tdns increases, the number of DN decreases. This provides
to the sink node to regulate the number of DN by changing
the DN selection threshold tdns.

As observed in Fig. 1, the number of DN is regulated by
changing the DN selection threshold tdns. The total energy
consumption of sensor nodes depends on the DN selection
threshold tdns. To show this dependence, we change the tdns

in same interval used for last simulation. As observed in Fig. 2,
while the tdns increases, the average total energy consumption
decreases. According to this result, we state that the sink
can regulate the total energy consumption of sensor nodes by
dealing with keeping it maximum since maximum value of
tdns makes the number of DN minimum.

The DN selection algorithm of DNRS find the tdns to
distributively determine the DNs by capturing the increase of
the estimation distortion computed in each decision interval
by the Adaptive LMS Filter at the sink. Therefore, to evaluate
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Fig. 2. The designated node selection Threshold tdns vs. the average total
energy consumption.

0 20 40 60 80 100
0

0.5

1

1.5

The Number of DNs

Th
e 

Es
tim

at
io

n 
D

is
to

rt
io

n 
of

 A
da

pt
iv

e 
LM

S 
Fi

lte
r

f=10
f=20
f=30
f=40

Fig. 3. According to the different reporting frequencies, the number of DN
vs. the estimation distortion.

the DN selection algorithm of DNRS we run the simulation
to observe the estimation distortion D and the number of DN
according to the different reporting frequencies from f = 10
to f = 40. As observed in Fig. 3, the estimation distortion of
Adaptive LMS Filter (D) stays relatively constant when the
number of designated nodes is increased from 10 to 100 for all
reporting frequencies from f = 10 to f = 40. For this case, we
can say that the estimation distortion D increases for the less
than 10 DN according to all reporting frequencies and while
the reporting frequency increases, the estimation distortion
decreases. Therefore, at the point where the estimation distor-
tion is increased, the sink stops increasing the DN selection
threshold tdns and sets the maximum allowable tdns providing
minimum number of designated nodes without diverging the
estimation distortion. Thus, DNRS determines the minimum
number of DN. This provides the significant energy saving
to Wireless Sensor Networks (WSN). For our case in this
simulation, since 100 sensor node can be represented with the
10 DN, DNRS provides the ninety percent of energy saving.

In addition to the designated node selection, DNRS regu-
lates the reporting frequency of the designated nodes to exploit
the temporal correlation in the event data. As discussed in
Section III-B, temporally correlated event data can be inferred
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Fig. 4. Estimation distortion of Adaptive LMS Filter for varying normalized
reporting frequency.

from its previous sample, the less information transmitted to
the sink node by the designated nodes is enough to reliably
detect the event properties. Therefore, DNRS decreases the
reporting frequency of designated nodes when the temporally
correlated event data is observed at the sink node. To evaluate
the effect of the reporting frequency of designated nodes on the
estimation distortion D we increase the normalized reporting
frequency f and observe the estimation distortion D for the
temporally correlated event data. As observed in Fig. 4, while
the reporting frequency increases, the estimation distortion
decreases and after the reporting frequency 101 estimation
distortion D stays relatively constant. Therefore, a significant
energy saving can be achieved by selecting small enough
f which does not result in the increase of the estimation
distortion D.

V. CONCLUSION

In this paper, we propose our method Distributed Node
and Rate Selection (DNRS) which based on the principles
of natural Immune System. Based on the B-cell stimulation
in immune system, DNRS selects the most appropriate sensor
nodes that send samples of observed event, are referred to as
designated node (DN). Using the method, each sensor node
can distributively decide whether it is a designated node or
not according to its correlation with its neighbors and event
source. In addition to the determination of the DNs, to exploit
the temporal correlation in the event data based on the immune
models, DNRS selects the appropriate reporting frequencies of
sensor nodes according to the congestion in the forward paths
and the event estimation distortion periodically calculated at
the sink node by Adaptive LMS Filter. With the selection of the
minimum number of designated nodes and the regulation of
the reporting frequency of designated nodes, DNRS provides
the significant energy saving to Wireless Sensor Networks
(WSN). DNRS is to enable the development of efficient trans-
port protocol which exploits the spatio-temporal correlation in
WSN.
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[20] S. Santini, K. Römer, An Adaptive Strategy for Quality-Based Data Re-
duction in Wireless Sensor Networks, Institute for Pervasive Computing
ETH Zurich.

[21] J. Hightower, G. Borriello, Location systems for ubiquitous computing,
IEEE Computer, Aug. 2001.


